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Optimal Sensor Deployment for Wireless Surveillance Sensor
Networks by a Hybrid Steady-State Genetic Algorithm

Jae-Hyun SEO• , Yong-Hyuk KIM • , Hwang-Bin RYOU• , Nonmembers, Si-Ho CHA•• ,
and Minho JO••• a), Members

SUMMARY An important objective of surveillance sensor networks is
to e� ectively monitor the environment, and detect, localize, and classify
targets of interest. The optimal sensor placement enables us to minimize
manpower and time, to acquire accurate information on target situation and
movement, and to rapidly change tactics in the dynamic �eld. Most of
previous researches regarding the sensor deployment have been conducted
without considering practical input factors. Thus in this paper, we apply
more real-world input factors such as sensor capabilities, terrain features,
target identi�cation, and direction of target movements to the sensor place-
ment problem. We propose a novel and e� cient hybrid steady-state ge-
netic algorithm giving low computational overhead as well as optimal sen-
sor placement for enhancing surveillance capability to monitor and locate
target vehicles. The proposed algorithm introduces new two-dimensional
geographic crossover and mutation. By using a new simulator adopting the
proposed genetic algorithm developed in this paper, we demonstrate suc-
cessful applications to the wireless real-world surveillance sensor place-
ment problem giving very high detection and classi�cation rates, 97.5%
and 87.4%, respectively.
key words: wireless sensor networks, surveillance sensor deployment, hy-
brid steady-state genetic algorithm

1. Introduction

Wireless sensor networks (WSNs) are utilized to monitor
the areas where traditional networks could not be used.
WSNs have been widely implemented in practice such
as disaster intervention, habitat monitoring, microclimate
research, surveillance, emergency search-and-rescue and
medical care, as sensor capability has improved [1], [2].
Currently, surveillance operations require an automated sen-
sor deployment system. Especially, an automated sensor al-
location and management system [3] is vital to a ground op-
eration that monitors the movement of targets. We are much
interested in the improvement of sensor capability as well as
optimal sensor placement. The optimal sensor emplacement
enables us to minimize manpower and time, to acquire accu-
rate information on target movement, and to rapidly change
tactics in the dynamic �eld. Therefore, the optimally �tted
sensor emplacement allows for us to have a good awareness
of targets.
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In general, the position of sensors a� ects coverage,
communication costs, and resource management of surveil-
lance sensor networks. Thus we are required to place a sen-
sor in the best location. Nevertheless, we randomly deploy
the sensors to monitor and locate the target vehicles. This
random deployment may cause sensors to be centralized or
to be surrounded by terrain features. It will decrease the
probability of detection and classi�cation of target move-
ment. Most of previous literatures regarding the sensor de-
ployment have focused their research on theoretical points
without considering practical input factors. Thus in this pa-
per, we apply more real-world input factors such as sensor
capabilities, terrain features, target identi�cation, and direc-
tion of target movements to the wireless surveillance sensor
placement problem.

In addition to the more practical problem-solving con-
tribution of this paper, we propose a novel hybrid steady-
state genetic algorithm (GA) to solve the practical sensor
deployment problem with more complex real-world input
factors. The optimal sensor placement is a problem of max-
imizing coverage and minimizing the number of sensors. It
is a kind of the Minimum Set Cover (MSC) problem. MSC
is an NP-hard problem. We here propose a hybrid steady-
state GA to �nd the high-quality solutions of the wireless
surveillance sensor deployment and apply it to a practical
case study. The proposed genetic algorithm to solve the
real-world sensor deployment introduces 2-dimensional ge-
ographic crossovers and mutations, and local optimization
which are unique features. In this paper, the experimental
data was obtained from a real surveillance situation.

The remainder of this paper is organized as follows:
Sect. 2 explains previous studies for the optimal sensor em-
placement. Section 3 de�nes the real-world problem han-
dled in this paper. In Sect. 4, we propose a hybrid steady-
state genetic algorithm for the optimal sensor deployment.
Section 5 describes the environments of experiment and an-
alyzes the results of simulation. The paper ends with con-
clusions in Sect. 6.

2. Related Work

There have been a number of other studies for the optimal
sensor deployment.

Lamm [4], [5] developed sensor employment rules on
a system engineering framework using statistical tools such
as Response Surface Methodology (RSM) [6]. Lamm used a

Copyright c� 2008 The Institute of Electronics, Information and Communication Engineers
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computer simulation to test experimental designs. The com-
puter simulation uses MapInfo Professional and MapBasic
software programs based on the geographic information sys-
tem. The major steps of the RSM experiment are as follows.
The initial step includes the design for the RSM experiment
before sensor deployment. The next step is to test whether
the experiment model is linear or not. The �nal step is to
develop initial sensor emplacement rules considering trade-
o� with multi-objectives and to re�ne them as the steps are
iterated. This test requires a lot of time and moreover it is
di� cult to conduct elaborate experiments.

Virtual force algorithm (VFA) of Zou et al. [7] em-
ployed the repulsive and attractive forces so as to enlarge
the coverage for the target region. In VFA, a cluster-head
gathers the location information of every sensor. Every sen-
sor has a force on it in�uenced by other sensors, obstacles,
and preferential areas. The experiment of VFA shows that
more sensors should be emplaced around the obstacles than
in the preferential areas. However, the cost of sensor devices
will be drastically increased because more and more sensors
are needed as the target area is expanded. It will be required
how to decrease the number of sensors.

Wang et al. [8] could meet the grid-quorum that a high-
density grid sends advertisements along its row and a low-
density grid sends requests along its column. They could
achieve better fairness as describing the cascaded move-
ment. A direct long movement could be decomposed into
multiple short movements. The accomplished fairness could
make it possible to relocate sensors evenly. The sensor re-
location maximizes coverage and shows higher detection
rates.

Sharp et al. [9] made an experiment on the pursuer-
evader problem. The problem is that the evader moves ran-
domly in the sensing �eld and the pursuer tries to capture
the evader by the information from the static wireless sensor
network. The experiment contributed to building the basic
sensor emplacement system signi�cantly.

There were two genetic approaches. Xu et al. [10] pro-
posed in 2006 a genetic algorithm to optimize sensor place-
ment and to minimize the number of sensors. Zhao et al.
showed energy e� cient heterogeneous sensor deployment
using a general genetic algorithm in 2007 [11]. The key
operators of the algorithms are order-mapped crossover and
simple inversion mutation. And it is di� cult to apply them
to the real-world because of lack of real-world input factor
modeling. They don’t consider the real-world input factors
such as sensor capabilities, terrain features, target identi-
�cation, and direction of target movements for the sensor
placement problem which are included in our problem solv-
ing. Because our proposed hybrid steady-state genetic algo-
rithm uses 2-dimensional geographical crossover and mu-
tation while Xu et al. and Zhao et al.’s genetic algorithms
do not use them, we cannot compare performance results of
both algorithms and ours.

3. Problem DeÞnition

Sensor capabilities, terrain features, target identi�cation, the
direction of target movements, and more factors are essen-
tial to the real-world sensor placement. It is crucial to con-
sider how the input factors will a� ect the target detection.
Therefore, we introduce the sensor network elements and
performance evaluation function, and denote input variables
in this section.

3.1 Problem Statement

A seismic sensor can detect vibrations caused by the move-
ment of vehicles or human beings. An acoustic sensor can
detect acoustic signatures caused by the movement of ve-
hicles or human beings. FLIR (Forward-Looking Infrared
Radar) is a device that senses infrared radiation. An attri-
tion sensor is used to destroy sensors which belong to the
other party. A wheeled vehicle is a vehicle that moves on
wheels and usually has a container for transporting things
or people such as trucks. A tracked vehicle is a vehicle that
runs on tracks instead of wheels such as trains.

In our experiment, the targets are classi�ed into
wheeled vehicles and tracked vehicles. The terrain features
consist of rivers, trees, hills, towns, and open �elds. Seis-
mic, acoustic, FLIR, and attrition sensors are used for our
experiment.

The e� ective sensor capabilities are obtained from U.S.
Army Research Laboratory (ARL) [12]. Table 1 shows the
probability of the target movements [4].

Sensor capabilities are probability of sensing a target.
Table 2 and Table 3 show the degradation of sensor capabil-
ities which is a� ected by the terrain features and the Eu-
clidean distance between sensors and obstacles [4]. The
criteria capability 100% is based on an open �eld. On the
other hand, the town �eld gives worst capability. A feature
with the more and bigger obstacles such as buildings, water,
hills, and trees will degrade the more sensor capability due
to refraction, re�ection, di� raction, and interference. In Ta-

Table 1 Probability ranges used for target movements.

Table 2 Degradation of sensor capabilities by terrain features (%).
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Table 3 Degradation of sensor capabilities by natural logarithm
function.

Table 4 Notation of input variables and evaluation function.

ble 2, notice that degradation is signi�cant for the features
like river, trees, hills, and towns.

In Table 3, e� ective detection rates (Power of Detec-
tion, POD) converted by the natural logarithm function, are
provided.C1 andC2 are constant to compute degradation of
sensor capability andD1 (m) andD2 (m) are detection range
of sensors.

3.2 Input Variables and Evaluation Function

Input variables and evaluation function are de�ned in Ta-
ble 4. Every target moves passing through a grid cell of area
5 km× 5 km. The direction of target movements in a grid
is de�ned by a probability given in Table 1 and Formula
(2). The frequency of target movements is chosen at ran-
dom. Multiple target movements can occur simultaneously

in a grid.
We compute the number of undetected targets by the

function. Then, we calculate the detection rate and the cor-
rect classi�cation rate as provided in Formula (7). Detection
means that sensors sense a target successfully. Classi�cation
accounts for the case of classifying a type of target success-
fully among the detected targets. We consider the dynamic
input variables for our problem, such as target movement di-
rection (p) in Tables 1 and 4 and breakdown of sensors de-
stroyed (detected) by the attrition sensors of the other party
in Formula (2) and (4).

The following are equations describing the evaluation
function to test our sensor employment capability. Formula
(1) sets the detection rate for each cell based on the dis-
tance between the center of each cell and sensors. Formula
(2) shows probability ranges used for targets and the coor-
dinates of the moved sensor are given by Formula (3). For-
mula (4) and Formula (5) present the process of getting the
numbers of detected targets (Cdetect), correctly classi�ed tar-
get vehicles (Cclass), and our sensors detected by the attri-
tion sensors of the other party (Cattrition), all of which are to
be parameters of simulation.

S(x) =
�

POD× R if 0 � x � D1�
log(x) × C1 + C2

�
× R if D1 � x � D2

(1)

(x, y) =

�
��������������
��������������

(0, Š1) if 0 � p � 0.02
(Š1, 0) if 0.03 � p � 0.22
(1, 0) if 0.23 � p � 0.42
(0, 0) if 0.43 � p � 0.5
(1, 1) if 0.52 � p � 0.7
(0, 1) if 0.71 � p � 0.8
(Š1, 1) if 0.81 � p � 1

(2)

(a, b) = (�, � ) + (x, y) (3)

Hl =
�

1 if r � R, r < e
0 otherwise

Ik =
�

1 if r � e, Hl = 1
0 otherwise

Fi =
�

1 if p � R, p < t, Ik = 0
0 otherwise

Gj =
�

1 if c � 0.95, Fi = 1
0 otherwise

(4)

In Formula (4) and Formula (5),i denotes the number
of detected vehicles,j accounts for the number of classi�ed
vehicles, andl andk stand for the number of our sensors de-
tected and destroyed, respectively by the other party.Ik tells
whether or not our sensor is destroyed by the other party’s
attrition sensor. ThusIk will in�uence the number of de-
tecting target vehicles,Fi . If the number of instances ofIk

= 1 increases, the number of detecting target vehicles,Fi

decreases (i.e., the case ofFi = 1 occurs less).

Cdetect=
Wtgt	

i=1

Fi +
Ttgt	

i=1

Fi
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Cclass =
Wtgt	

j=1

Gj +
Ttgt	

j=1

Gj (5)

Cattrition =
Wtgt	

k=1

Ik +
Ttgt	

k=1

Ik

U =


Wtgt + Ttgt

�
Š Cdetect (6)

D = 1 Š
U



Wtgt + Ttgt

� ,C =
Cclass

Cdetect
(7)

When the target vehicles move passing through the
area, we compute the number of undetected targets by ap-
plying Formulas (2), (3), (4), and (5). Finally, we compute
the detection rate and the correct classi�cation rate by For-
mula (7). Notice thatCattrition is not for equations but only
for monitoring the number of our sensors destroyed by the
other party. The number of our sensors destroyed by attri-
tion sensors is already re�ected in Formula (4).

4. The Proposed Genetic Algorithm

In this section, our hybrid steady-state genetic algorithm is
proposed, and the principal operators to optimize sensor em-
placement are illustrated.

4.1 Hybrid Steady-State GA

Genetic algorithms (GAs) were �rst proposed by Holland
[13]. GAs are a class of probabilistic optimization algo-
rithms and inspired by the biological evolution process.
GAs model the concept of natural selection and genetic in-
heritance.

Our hybrid steady-state GA is the mixture of the
steady-state GA and the hybrid GA. The generational GAs
replace the whole or a part of solutions with new o� spring
per each generation. Meanwhile, the steady-state GA re-
places just one solution with a new o� spring per each gen-
eration. We classify GAs into hybrid or pure ones according
to whether or not local optimization is applied. The hybrid
GA uses local optimization for improvement of o� spring
produced by crossover.

Figure 1 shows the �ow diagram of our hybrid steady-
state GA. The steps of the proposed GA are described in the
following.

1. Step 1 generates population based on a random deploy-
ment.

2. Step 2 is the selection of Parent 1 and Parent 2.
3. Step 3 is the process of the crossover which creates an

o� spring by the genes’ recombination of Parent 1 and
Parent 2.

4. Step 4 is the process of the mutation that varies each
gene of the o� spring by some probability. Then we
make simulation for evaluating the o� spring and get
the information of detection rate and classi�cation one.

5. Step 5 is the process of the local optimization. The op-
erator moves each sensor to the best adjacent position

Fig. 1 A �ow diagram of the proposed hybrid steady-state GA.

by trying to move the sensor to the eight neighbor cells.
6. Step 6 is the process of the replacement that replaces

with the �nal o� spring a solution of the population.
7. All steps will be iterated until the stop condition is sat-

is�ed. The stop condition is set up to the number of
generations.

4.2 Crossovers and Mutations

We apply two di� erent crossover operations and two mu-
tation operations in the proposed hybrid steady-state GA.
The two crossover operations are block crossover and table
marriage crossover and the two mutation operations include
swap mutation and attractive/repulsive (AR) mutation.

4.2.1 Block Crossover

Anderson et al. [14] suggested a block uniform crossover on
a two-dimensional matrix chromosome that tessellated the
chromosome intoi× j blocks; the gene in the block is copied
from a uniformly selected parent. In this paper, we do not
use a random property because in our preliminary test it did
seldom give any e� ects on the performance. Figure 2 shows
the block crossover, a modi�ed version of the original block
uniform crossover. Table 5 shows the pseudo-code of this
modi�ed operator.

4.2.2 Stable Marriage Crossover

A stable marriage problem [15] has two �nite sets: the set
of men and that of women. It is designed for �nding stable
matching which is just a one-to-one mapping between both
sexes. In this paper, we apply the stable marriage problem to
a new crossover operator named stable marriage crossover.














