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Abstract: Event detection for context inconsistency is challenging in pervasive computing 
environments, where contexts are often noisy owing to fragile connectivity, node frequent 
movement and resource constraints. As a recent scheme, CEDA – Concurrent Event Detection for 
Asynchronous inconsistency checking (CEDA) – concurrently detects context inconsistency by 
exploring the happened-before relation among events. Nevertheless, CEDA suffers from several 
problems – unscalable from partial centralised detection manner, heavy computation complexity 
and false negative. To address these challenges, we propose in this paper the SECA scheme – 
asynchronous event detection for context inconsistency in pervasive computing. It puts forward 
a new type logical clock – snapshot timestamp – to check event relations, which enables it to be 
efficient in the scenarios where CEDA fails to. Meanwhile, SECA comes up with a lightweight 
update mechanism for the snapshot clock, which considerably reduces time and space complexity. 
Extensive experiments have been conducted and results show that SECA surmounts CEDA with 
respect to detection accuracy and scalability.
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two problems. They require central control or centralised, 
which incurs their less scalability in large-scale pervasive 
computing environments with a huge number of nodes. 
Moreover, they implicitly assume that contexts being 
checked belong to the same snapshot so that they could not 
fairly measure the temporal relations among context events. 
For the above RFID-based location acquisition, they could 
detect the context inconsistency with the assumption that 
these two pieces of location context took place at the same 
time. This assumption is criticised in Huang et al. (2009) 
and Zhang et al. (2011) because it may not hold in some 
pervasive computing environments that concurrent events 
(formal definition as Figure 5) are normal owing to the 
asynchronous communication and network delay.

To eliminate the above two assumptions, CEDA 
(Concurrent Event Detection for Asynchronous inconsistency 
checking) (Huang et al., 2009) was proposed. Intuitively, it 
mapped context inconsistency checking into context event 
detection and checked concurrent context events based on 
the happened-before relation. CEDA has three limitations. 
Firstly, it checked event inconsistency in a centralised 
manner, incurring its less effectiveness in large-scale 
pervasive applications. Secondly, it introduced false negative 
because happened-before relation could hardly capture all 
event relations accurately. Finally, CEDA suffered heavy 
time and space complexity, resulting in its poor performance. 
Figure 1 illustrates the fairness of central-based systems in 
detecting context inconsistency among n nodes. All nodes are 
in the same environment and every node acquires one kind of 
context and delivers contextual information to central node D 
by m message. Thus, the node D will get m * n communication 
overhead, n times as much as that of the normal node, (e.g., 
node A or F).

To address the challenges of the current schemes, we 
propose in this paper SECA scheme - asynchronous event 
detection for context inconsistency in pervasive computing 
environments, which is built based on time snapshots and 
logical clocks. SECA detects context inconsistency in a 

1 Introduction

Growing convergence of wireless communication 
technologies, hand-held devices and embedded systems 
has fostered an attention to pervasive computing, which is 
a new computing paradigm shift from distributed system 
(Jian et al.,2012). The new paradigm aims at creating 
intelligent spaces so that users access services from spaces 
without awareness of underlying technologies. This kind of 
intelligence is chiefly achieved by context-awareness that 
refers to a mechanism that assists pervasive applications 
in adapting to varying contextual information. Contexts 
are pieces of information that captures the features of 
pervasive computing environments (Xu et al., 2008). Owing 
to the context noise caused by unreliable connectivity, 
resource constraints and dynamic context evolution, context 
inconsistency remains open (Zhang et al., 2010). For instance, 
a RFID-based application may obtain two pieces of location 
contexts: the user is in the living room and the user is in the 
kitchen owing to the RFID data noise or signal interference 
(Huang et al., 2009; Zhang et al., 2011; Zhang et al., 2012 and 
Jian et al., 2012).

A wide spectrum of schemes for context inconsistency 
checking have been proposed over the past three years. In 
Wang et al. (2004), Bu et al. (2004) and Bu et al. (2004), 
hidden rules and axioms from ontology have been exploited 
to check context inconsistency where contexts were denoted 
as assertions. In Xu et al. (2008), two policies drop-all and 
drop-best were proposed to resolve context inconsistency 
where contexts were modeled by tuples. Nevertheless, these 
two schemes did not delineate the context inconsistency 
checking. In Xu et al. (2006), a tree-based checking 
scheme on top of the first-order logic was reported, which 
detected context inconsistency by refining consistency trees 
using context constraints. To further extend the work, (Xu 
et al., 2010) reported the manners by which the context 
consistency was built and checked with partial constraints. 
However, most existing schemes are seriously limited by 
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scheme, following by theoretical analysis. Section 5 reports 
our extensive experimental results. Section 6 concludes the 
paper and point out directions of the future improvement.

2 Related work

Context-awareness is a main mechanism for pervasive 
computing that enables people to unobtrusively access 
services without the awareness of underlying technologies. 
Noisy contexts usually lead to context-aware applications 
incongruous behaviours and user perplexed feelings. Hitherto, 
context inconsistency detection has drawn increasing 
attention in recent years.

A bunch of schemes have been proposed in the existing 
literature. In Wang et al. (2004) and Gu et al. (2004), 
ontology was used to model contexts and their properties. 
In Bu et al. (2006) and Bu et al. (2006), context consistency 
was specified by ontology assertions such that it could be 
checked by hidden rules and axioms in ontology. In Xu 
et al. (2006), context consistency was modeled by tuples 
and inconsistency checking was mapped to the comparison 
among the elements in tuples. This kind of context 
inconsistency was resolved in Xu et al. (2008), where three 
resolution policies including drop-all and drop-best had 
been proposed. To further detect context inconsistency 
based on first order logic, (Xu et al., 2010) reported the work 
that built context consistency trees and refined these trees 
by checking partial constraints. However, most existing 
schemes suffer from a couple of problems. They are heavily 
centralised or require central control, which incurs their 
ineffectiveness in large-scale pervasive environments or 
pervasive applications. Moreover, they do not consider the 
event relations, particularly temporal relations. As a matter 
of fact, most of them implicitly assume that contexts being 
examined belong to the same snapshot. This assumption may 
not always be satisfied in pervasive computing environments, 
which are characterised by asynchronous cooperation and 
schedule. Note that DCCI (Zhang et al., 2011) reported the 
work that detected context inconsistency in a peer-to-peer 
manner. However, this work also relies on the above two 
assumptions.

CEDA (Huang et al., 2009), as a derivation of Huang 
et al. (2011), took event temporal relations into account 
and presented a scheme on the basis of happened-before 
relation. It consisted of a checker process that determined 
context inconsistency and several normal processes that 
reported the values of event vector clocks. However, CEDA 
was a semi-centralised scheme in which the checker process 
might be the system bottleneck when the system scale 
increases. Another prominent issue is that its communication 
overhead was heavy, since normal processes reported their 
observations from time to time owing to the frequent 
happened context events. Taking RFID for example, a 
reader gets around 50 values each second from the same tag 
as usual (Zhang et al., 2011). In addition, CEDA ignored 
some false negative scenarios, which affected its detection 
accuracy.

distributed manner, which enables checking nodes not to be 
blocked or to become system bottlenecks. It adopts logical 
clocks rather than vector clocks to evaluate event relations. 
In order to be scalable, SECA customises logical clocks by 
holding the value part. Thus, it detects event relations that 
CEDA can and cannot support. Theoretical analysis and 
extensive experimental results show that SECA achieves 
higher detection accuracy than that of CEDA in a more 
scalable manner. To summarise, the main contributions of 
this paper are the following three-fold.

1 SECA scheme is significantly improved compared with 
the state-of-the-art detecting techniques, such as CEDA 
scheme from the performance aspect. Specifically, 
CEDA is a central-based checking system, which makes 
the payload of the system heavy. In contrast, SECA 
achieves its function in a fully distributed manner.

2 SECA scheme can detect false negative scenarios where 
CEDA fails to. We also conduct theoretical analysis to 
discuss about the reasons that SECA can while CEDA 
cannot.

3 SECA scheme respectively reduces CEDA’s complexity 
of time and space from O (n2) to O(n) and from O(1) 
to O(n), where n is the number of nodes in a pervasive 
network.

Preliminary result of this paper has been reported in our 
previous work (Zhang et al., 2012 and Zhang et al., 2011). 
This paper gives a more comprehensive presentation and 
discussion about the asynchronous event detection for 
checking the context inconsistency, including details of 
definitions, tractable algorithms and evaluation of the 
algorithms.

The remaining of this paper is structured as follows. 
Section 2 provides an overview of the existing work. Section 
3 briefly introduces the background knowledge that is the 
basis of our work. Section 4 presents the design of SECA 

Figure 1 The fairness of central-based systems in event detection 
for context inconsistency. The numbers in the figure 
refer to the corresponding link’s bandwidth demand 
(see online version for colours)



198 D. Zhang et al.

If b is sending a message by one process and c is the receipt of 
the same message by another process, then b → c.

If b → c and c → d, then b → d.

Note that any event cannot occur before itself, i.e., b  b 
for any event b. Two events b and c are concurrent if both 
b  c and c  b. In fact, the happened-before relation is a 
kind of strict partial order, which is inherently transitive, 
irreflexive and asymmetric. Note that the processes that 
compose a distributed system have no knowledge of the 
happened-before relation unless they are ordered by a logical 
clock, e.g., Lamport clock or vector clock (Fidge, 1988 and 
Mattern, 1994). Even though one event b occurs physically 
earlier than another event c, this does not imply that b → c. 
For the same reason, b → c neither indicates that the event b 
occurs physically earlier than the event c.

3.2 Logical clock
Logical clock is introduced in distributed computing owing 
to the lack of global physical clocks and completely accurate 
synchronisation clocks. It is a mechanism for capturing causal 
and chronological relations between events. It is defined as 
follow:

Definition 3.2 Given an event a in a process Pi, the 
corresponding logical clock Ci is a function that assigns a 
number Ci(a), where the number is regarded as the time when 
the event occurred.

By Definition 3.2, the clocks of the entire system is 
represented by the function C that assigns to any event a the 
number C(a), where C(a) = Cj(a) if a is an event in the process 
Pj. Thus, only when one of following conditions is satisfied, 
the happened-before relation is true:

1 Events a and b are in the same Pi and a occurs before b, 
then Ci(a) < Ci(b).

2 Event a in the process Pi sends the message to an event b 
in the process pj, then Ci(a) < Ci(b).

Let P0, P1 and P2 be three processes and a, b, ...,k be events. 
All events are counted by Lamport’s logical clock algorithm. 
Figure 2 illustrates an example using Lamport’s logical 
clock, which partially orders the events happened in P0, P1 
and P2. Lamport’s logical clock algorithm gets local events 
sequenced, e.g., a and b events. However, it causes an issue 
of identical timestamps and thus it hardly states which events 
are causally related. For instance, whether events a and f may 
have the same timestamps or not. To address the identical 
timestamp issue, vector clock is introduced.

Figure 2 An example of Lamport’s logical clock

It is worthwhile to mention that our work SECA is similar 
with IEEE 1516 time management (Fujimoto, 1998 and 
Group, 2000) with several differences.

•	 Firstly, we share the similar idea in time management 
in IEEE 1516. We focus on the concept of snapshot 
timestamp, as well as its characteristics with theoretical 
analysis. While IEEE 1516 emphasises on the usage of 
time management with distributed time clocks.

•	 Secondly, we develop and implement the snapshot clock 
for concurrent event detection, while IEEE 1516 is a 
standard that does not provide a way to checking event 
concurrency detection. Actually, IEEE 1516 is designed 
for simulations to ensure that temporal aspects of the 
system under investigation are correctly reproduced by 
the simulation model.

•	 Finally, SECA is an independent scheme and can be 
customised for personal computers and smart devices. 
While IEEE 1516 relies on federates and the Runtime 
Infrastructure (RTI), because it is just a part of IEEE 1516 
standard. IEEE 1516 time management can be extracted 
as an independent module after modification. In addition, 
IEEE 1516 is more complex than SECA, providing 
various functions that are not mentioned in SECA, e.g., 
clock synchronisation and time compensation.

Consequently, we find it appropriate to revisit the event 
relation in asynchronous pervasive computing environment. 
Owing to the absence of a global clock and absence of 100% 
accurately synchronised clocks, logical clock was introduced 
in Lamport (1978) and happened-before was designed to 
measure event relations. In this paper, SECA customises a 
logical clock for event detection of context inconsistency. 
Theoretical analysis and experimental results show that 
SECA address the issue of context inconsistency detection 
with an accurate and scalable manner.

3 Background

In this section we introduce happened-before relation. Then 
we give an overview about the logical clock and Lamport’s 
algorithm. Finally, we briefly present what vector clock is.

3.1 Happened-before relation
The happened-before relation is coined in Lamport (1978). 
It refers to a way of ordering events by the potential causal 
relation of pairs of events in a concurrent system, particularly 
asynchronous distributed systems. Suppose a single process 
is a set of events with a priori total ordering, the events of a 
process form a sequence and sending or receiving messages in 
a process is an event (Zhou et al., 2008). Thus, the happened-
before relation denoted by is given as Definition 3.1.

Definition 3.1 The ‘→’ among events of a system is a relation 
such that:

If b and c are events in the same process and b occurs before 
c, then b → c.
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Pn, which communicate with each other through message-
passing (Zhou et al., 2012). The processes do not share a 
global memory and communicate solely by exchanging 
messages. The communication delay is finite but unbounded. 
An event e in the process Pj is modeled by intervals using 
boolean predicate Ej. The event e is occurring in the process 
Pj when Ej is true. Otherwise, the event does not exist. The 
events are modeled by means of intervals. The beginning and 
the end of an event are denoted as lo and hi, respectively.

4.2 Modeling events by intervals
The event is detected by a boolean predicate Bi. The event 
is happening in the process Pi when Bi is true and it does 
not occur when Bi is false. The event is represented by an 
interval, denoted by lo and hi, corresponding to the beginning 
and the end of the interval. The notations in the design of the 
proposed scheme are given in Table 1.

Table 1 Notations in the design of SECA algorithm

Notation Explanation

n the number of processes
Pi the ith process involved in the

context inconsistency detection
lo the beginning of an interval
hi the end of an interval
I the interval that denotes the time period

between two successive events
Ei event on Pi
SCi [1...n] snapshot clock on Pi

4.3 System design
This subsection presents snapshot timestamp and its update 
policy and then introduces snapshot-based event detection.

Snapshot Timestamp is an implementation of logical clocks, 
where all nodes maintain a logical clock. In the system of snapshot 
clocks, the time domain is denoted as a set of n—dimensional, 
non-negative integer clock. Each process Pi maintains a snapshot 
clock Si[1..n], where Si[k] is the kth local logical timestamp and 
describes the logical time process at the process Pi. The process 
Pi updates its snapshot clock by the following rules:

•	 Before sending a message, the process Pi updates its 
local clock by

[ ] [ 1] ( 0),i iS k S k d d= − + >  (2)

 where the default value of d is 1. Then, Pi piggybacks 
a message m with its snapshot clock to the remaining 
nodes in the same environment.

•	 When receiving a message (m, Sj[send]) from the 
process Pj, the process Pi gets the snapshot timestamp at 
the receiver point as:

Si[receiver] = max(Si[k], Sj[send]), (1 < k < n) (3)

3.3 Vector clock
Vector clock refers to a mechanism for partially ordering 
events in a distributed system and detecting causality 
violations. The vector clock of a holistic system is an array/
vector of N logical clocks and every process maintains a 
clock. A local smallest possible value copy of the global 
clock-array is kept in every process. Figure 3 shows an 
example of vector clock.

Figure 3 An example of vector clock

( ) ( ) [ ( ) ( )]

[ ( ) ( )]
j j

k k

VC b VC c j VC b VC c
k VC b VC c

< ⇔ ∀ ≤ ∧

∃ <  
(1)

Let VC be a function of assigning the number VC(a) to an 
event a, where VC(a) = VCj(a) if a is an event in the process 
Pj. Equation 1 gives the judgement of vector clocks of two 
events b and c. Thus, happened-before relation in vector 
clock is given by Theorem 1.

Theorem 1 If VC(b) < VC(c), then b → c.

Vector clock is promising for event ordering, but it has 
several conspicuous issues. First, it requires that every 
process maintains an array to record the logical clock values 
of all processes. Second, it is designed under an assumption 
of a fixed set of participants (Almeida et al., 2008). This 
assumption may not be held in asynchronous pervasive 
computing environments, where nodes are able to join or 
leave pervasive networks randomly. The same issue appears 
in Lamport’s logical clock. Consequently, these logical clock 
algorithms are inappropriate to be used in pervasive scenarios 
due to changing numbers of participants and churns.

4  Asynchronous event detection for context  
inconsistency in pervasive computing

In this section, we propose a scheme for event detection for 
context inconsistency in pervasive computing environments. 
We introduce the system model and then depict the system 
design in detail, followed by discussions.

4.1 System model
Pervasive computing environments are modeled as a 
loosely-coupled distributed system, where physical entities 
(e.g., objects and users) sense environments and pervasive 
infrastructures handle sensor readings and deliver services to 
pervasive applications. A pervasive computing environment 
is composed of a set of n asynchronous processes P1, P2, ..., 
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Proof: Straightforwardness. 

Note that the concurrent relation between the events b and 
c can be detected by comparing their timestamps (e.g., Sp 
and Sq). However, this is an inappropriate scheme owing to 
two reasons. One is that it is complex to compare snapshot 
timestamps. The other is that it may incur false negative 
when using the happened – before relation, which will be 
discussed in the discussion part. In order to easily detect 
concurrent events, we propose an event concurrence detection 
mechanism as presented in Theorem 4.

Theorem 4 Given two events b and c in the processes Pi 
and Pj and these two events communicate each other.

Assume the event b sends a message to the event c with its 
timestamp Spb[i]. Then:

( [ ]lo b hib c c Sp i c⇔ ≤ <�

Proof: There is a message from the event b to the event c. 
According to the update policy of snapshot clocks, Spb[i] is 
the maximal event timestamp between the timestamps of the 
events b and c, respectively. Thus, the value of Spb[i] is not 
less than clo. Because the message is handled by the event c, 
the value of Spb[i] must be less than chi 

4.4 Snapshot-based Concurrent Event Detection
In this section we present the SECA scheme asynchronous 
event detection for context inconsistency in pervasive 
computing environments. SECA is built upon snapshot 
timestamps and enables all nodes to detect concurrent context 
inconsistency events without central control or centralised 
hierarchy. Thus, SECA dramatically reduces communication 
complexity and successfully avoids the risk that the central 
nodes are easily to be the bottleneck of a pervasive computing 
system.

The distributed architecture of SECA suggests that every 
process will automatically check context inconsistency. The 
basis of context inconsistency detection lies in the fact that: 
when two events b and c are concurrent, b and c can satisfy 
Theorem 4. Figure 5 illustrates the fact that the events b and 
c are concurrent.

Figure 5 Concurrent events b and c, where . . . .c b cI lo I x I hi≤ <

The pseudo-code of SECA scheme is given in Algorithm 
1, which includes three parts: event processing (lines 2–8), 

Figure 4 illustrates the update policies of snapshot clock 
algorithm, where events are represented by the starting and 
the end of intervals, i.e., lo and hi. When the process P0 
would like to send a message, it will automatically increment 
the value of its snapshot clock and then forwards it to the 
processes P1 and P2.

Figure 4 An example of snapshot-clock update mechanism

4.3.1 Basic properties
Isomorphism. Evidently, by comparing timestamps (i.e., an 
array of n– elements), the snapshot clock keeps its property 
of isomorphism. The relations between timestamp intervals 
include two ordering relations represented as ‘≤’ and ‘<’ and 
one concurrent relation denoted as ‘||’.

Property 4.1 Given two snapshot timestamp Sp and Sq, the 
isomorphism of the snapshot clock is given as:

,

[ ] [ ]
 and [ ] [ ]

 not ( ) and not ( )

i

i i

Sp Sq Sp i Sq i
Sp Sq Sp Sq Sp i Sq i
Sp Sq Sp Sq Sq Sq

′

≤ ⇔ ∀ ≤
′< ⇔ ≤ ∃ <

⇔ < <�

Happened-before relation. Recall that relation → partially 
orders the set of events in a distributed execution. Snapshot 
timestamp based events in a distributed system satisfies 
Theorem 2.

Theorem 2 Suppose two events b and c have timestamps Sp 
and Sq respectively, then:

b c Sp Sq
b c Sp Sq

→ ⇔ <
⇔� �

Proof: According to the update policies of snapshot clocks, 
the happened – before relation holds.  

Consequently, an isomorphism property exists between the 
set of partially ordered events produced by a distributed 
computation and their timestamps. This is a powerful 
and interesting property of snapshot clocks. By checking 
timestamps, we are able to get the event concurrent relations. 
For instance, let the events b and c being occurred at the 
processes Pi and Qj, respectively. They are assigned of 
timestamps Sp and Sq. Then, the happened – before relation 
between these two events is satisfied in Theorem 3.

Theorem 3

[ ] [ ]b c Sp i Sq i→ ⇔ <
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In some cases, intervals are overlapped and events are 
concurrent, but CEDA cannot detect them. This is notorious 
for false negative phenomena, thus definitely brings down 
the detection accuracy of the CEDA scheme. This is because 
Equation 4 cannot detect these overlapping intervals, although 
they are mutually across.

Figure 7 illustrates three kinds of false negative scenarios, 
where CEDA scheme fails to check context consistency 
correctly In Figures 7(a), 7(c) and 7(c), two events in two 
processes satisfy 

message processing (lines 9–19) and context inconsistency 
checking (lines 20–26).

The event processing refers to a process that updates its 
snapshot clock when an event occurs within its life span. To 
be specific, the process updates its snapshot clock, the event 
queue EQ, as well as interval queue IQ. by broadcast (e.g., 
SECA offers a System-Broadcast primitive). Note that we 
do not provide a function to reduce the message complexity 
in SECA scheme owing to its scale is not large. For  
large-scale applications of context inconsistency detections, 
to further reduce the message complexity, we may design 
a preliminary procedure to let every process realise which 
processes it should communicate with for inconsistency 
detection.

There are two kinds of message exchange actions: sending 
and receiving. The sender is in charge of updating the event 
queue and interval queue (see steps 11–14). Correspondingly 
the receiving process modifies its snapshot clock by 
picking the maximal timestamp value between the snapshot 
timestamps of the sender and receiver processes (see steps 
15–19). Note that the actions of senders and receivers are 
incorporated together in the pseudo-code.

The third part of Algorithm 1 corresponds to the context 
consistency detection. Since the elements in EE implicitly 
satisfy Theorem 4, we output the event pairs simply by a 
validation check.

4.5 Discussions
Thus far, we have presented the design of SECA scheme in 
previous sections. Does SECA solve false negative caused 
in CEDA scheme? Does SECA detect context consistency 
accurately in pervasive computing environments? We 
investigate these issues with theoretical study in this section. 
We further evaluate SECA scheme by extensive experiments 
in the following Section 5.

4.5.1  False negative in Happened – Before-based 
context consistency detection

Given n intervals I1, I2,….,In, CEDA checks concurrent context 
consistency events by Equation 4, which is defined upon the 
happened – before relation.

( . . ) ( . . ), 1 .j k k jI lo I hi I lo I hi j k n→ ∧ → ∀ ≤ ≠ <  (4)

The case of interval overlaps, which is characterised by 
concurrent events, is illustrated by Figure 6.

Figure 6 Overlapping intervals that can be detected based on 
Happened – before relation in CEDA scheme
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4.5.2 Complexity
Taking a panoramic view of the SECA scheme, it does not 
rely on central control to check context consistency.

All processes involved in a pervasive system are equal 
and check context consistency by snapshot clocks. Every 
process requires O(1) space complexity to maintain snapshot 
timestamps and O(n) time complexity for every context 
consistency event detection.

To further evaluate the time and space complexity of the 
proposed scheme, we have implemented the detection schemes 
by means of physical clocks, vector clocks and snapshot 
clocks, labeled as PCA, CEDA and SCA, respectively. Table 2  
compares the PCA, CEDA and SECA in terms of their 
clock synchronisation, handling the occurrence of an event, 
detecting overlapped intervals and concurrent events and false 
negative. By comparison, SCA significantly reduces the time 
and space complexity concerning event processing and context 
consistency checking. Meanwhile, SECA cuts off a half of the 
possibility of false negative generated in CEDA scheme.

Table 2 Comparison of PCA, CEDA and SECA with respect to 
checking context consistency events

PCA CEDA SECA

Synchronisation  × ×
An event occurs × O (n) O(1)
Concurrent event O(n) O (n2) O(n)
False negative × |overlap| < e –e < overlap < 0

( . . ) ( . . ), ( . . )

( . . ), and ( . . ) ( . . ),
j k k j j k

k j j k k j

I lo I hi I lo I hi I lo I hi
I lo I hi I lo I hi I lo I hi

→ ∧ Λ

→ Λ

 

� 

respectively. These two event pairs occur concurrently but 
Equation 4 fails to detect them. On the contrary SECA 
scheme is capable of finding these concurrent context events 
successfully As for Figures 7(a) and 7(b), SECA compares 
the message timestamps of senders with the lo and hi of 
the receivers and then find the concurrency. Note that 
concurrency in Figure 7(c) is challenging to detect. This kind 
of concurrency is mainly caused by the message delay.

As a matter of fact, there are 25 temporal interaction 
of intervals in a distributed system (Kshemkalyani, 1996; 
Zhang et al., 2012 and Chen et al., 2012), as shown in 
Figure 8. We have checked these 25 temporal interaction of 
intervals and find that 16 temporal interaction of intervals 
can satisfy the requirement shown in Equation 4. This 
implies that these 16 temporal interaction of intervals can 
be accurately recognised by the happened – before relation. 
However, the rest of 9 temporal interaction of intervals, i.e., 
IA, IB, IC, ID, IE, IF, IJ, IH and IK labeled in Figure 8, may 
be overlapped in physical time, but the happened – before 
relation falls short of checking them. For those 16 temporal 
interaction of intervals within concurrent events, SECA 
scheme can detect them using the snapshot timestamp and 
hence may be regarded as a general solution. For the rest 
temporal interaction of intervals, it remains open to research 
community.

Figure 7 Three kinds of false negative scenarios caused by  happened – before relation in CEDA scheme.  Concurrent events in these  
scenarios can be accurately detected by SECA scheme (a) False negative scenario one between two concurrent events; (b) False 
negative scenario two between two concurrent events and (c) False negative scenario three between two concurrent events

Figure 8 Temporal interaction of intervals in a distributed system
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Figure 9 illustrates the performance results with tuning 
the number of nodes from 2 to 20. Both CEDA and SECA 
schemes achieve high level of detection accuracy, showing 
a slightly downward trend. This indicates that vector clocks 
and happened – before relations are efficient for detection of 
concurrent context inconsistency events. Meanwhile, SECA 
gets higher level of accuracy than CEDA scheme, which is 
attributed to the exclusion cases that CEDA scheme fails to 
detect are checked by snapshot clocks in SECA scheme.

Figure 9 Overall performance of SECA scheme by increasing 
node participants

5.3  Detection performance with varying  
message delays

In this section, several experiments are conducted to 
investigate how the changes of the average message delay 
affect the concurrent event detection of the proposed scheme.

As shown in Figure 10, both SECA and CEDA schemes 
reduce their detection accuracy with the increase of message 
delay (note that the x–axis is the logarithm of the message 
delay, counted by seconds). In all experiments, SECA 
achieves higher level of accuracy than CEDA, owing to its 
snapshot-based timestamp checking mechanism. As the 
logarithm of the message delay is between –2 to 3, SECA 
gets a better detection accuracy with less communication 
overheads. Meanwhile, in view of the pervasive network 
scale, we hereby set the value of the logarithm of message 
delay as 0.25 to 8 seconds.

Figure 10 Detection accuracy with varying message delays

5 Experiments

We conduct extensive experiments in this section to 
further evaluate whether SECA is appropriate to context-
aware applications in asynchronous pervasive computing 
environments. Particularly, this section will evaluate:

•	 to what extent the detection accuracy is that SECA 
scheme can achieve

•	 whether SECA outperforms CEDA in terms of detection 
accuracy and computation. 

5.1 Experiment setup
A smart building scenario is simulated where users move 
around randomly. The duration of users’ staying in an office 
follows the exponential distribution. In view of that user 
location is regarded as the most important type of context 
in asynchronous pervasive computing environments (Xu 
et al., 2009; Ni et al., 2004; Want et al., 1992 and Ji ,2011), 
user location is our focus. The environment is equipped with 
RFID devices and every user carries a RFID tag such that the 
location context is collected timely and correctly. The RFID 
data concerning user location is generated with controlled 
error rates of 10%, 20%, 30%, 40% and 50% by using the 
mechanisms presented in the existing literature (Xu et al., 
2010 and Rao et al., 2006). A constriction is implanted that 
a user cannot have two difference locations at the same 
time. Table 3 reports the experimental settings in detail. 
Note that some parameters are not listed in Table 3, e.g., 
lo and hi, since they are included in the design of SECA 
scheme, illustrated in Algorithm 1. Meanwhile, the detection 
accuracy is evaluated as the average value for all processes 
in all network nodes.

Table 3 Experimental settings

Experimental settings

The number of processes 2–15
The event duration 5 – 120s
The message delay 0.01 – 655.36s

Windows 7 Ultimate
Checking Devices Intel Core2 CPU, 1.67 GHz

Memory: 2 GB Disk: 512 GB

5.2 Overall performance
A series of experiments are designed to check the detection 
accuracy of SECA and whether it performs better than 
CEDA. Given that the experiments shed light on detecting 
concurrent events of user locations, we limit the number of 
nodes attending for the same contexts from 2 to 20. Every 
node runs two detection process instances. Every event has a 
random life span from 20 to 120 seconds and every message 
suffers a random delay between 0.25 to 8 seconds. The 
following experiments employed the same setting without 
explicit declaration.
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Currently, SECA scheme could be further improved in the 
following perspectives. Firstly, we plan to investigate how SECA 
performs in large-scale pervasive computing environments 
with thousands of participants. Secondly, we will study whether 
and how SECA copes with the dynamic changes of processes 
involved in the concurrent event detection. Finally, we are going 
to evaluate SECA performances in various scenarios with more 
types of contexts and consistency constraints.
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