
Copyright © 2012 Inderscience Enterprises Ltd.

Int. J. Ad Hoc and Ubiquitous Computing, Vol. 11, No. 4, 2012 195

Asynchronous event detection for context
inconsistency in pervasive computing

Daqiang Zhang
School of Computer Science,
Nanjing Normal University,
Nanjing 210046, China
E-mail: dqzhang@njnu.edu.cn

Zhangbing Zhou*
School of Information Engineering,
100083, China University of Geosciences (Beijing)
E-mail: zbzhou@cugb.edu.cn
*Corresponding author

Qin Zou
School of Computer,
Wuhan University, Wuhan 430079, China
E-mail: qinnzou@gmail.com

Tianyi Zhan
Department of Computer Science,
Nanjing University, Nanjing 210032, China
E-mail: zhanty@nju.edu.cn

Minho Jo*
College of Information and Communications,
Korea University, Seoul 136701, South Korea
E-mail: minhojo@gmail.com
*Corresponding author

Abstract: Event detection for context inconsistency is challenging in pervasive computing
environments, where contexts are often noisy owing to fragile connectivity, node frequent
movement and resource constraints. As a recent scheme, CEDA – Concurrent Event Detection for
Asynchronous inconsistency checking (CEDA) – concurrently detects context inconsistency by
exploring the happened-before relation among events. Nevertheless, CEDA suffers from several
problems – unscalable from partial centralised detection manner, heavy computation complexity
and false negative. To address these challenges, we propose in this paper the SECA scheme –
asynchronous event detection for context inconsistency in pervasive computing. It puts forward
a new type logical clock – snapshot timestamp – to check event relations, which enables it to be
efficient in the scenarios where CEDA fails to. Meanwhile, SECA comes up with a lightweight
update mechanism for the snapshot clock, which considerably reduces time and space complexity.
Extensive experiments have been conducted and results show that SECA surmounts CEDA with
respect to detection accuracy and scalability.

Keywords: context inconsistency; context-awareness; event detection; snapshot-based timestamp;
ubiquitous computing.

Reference to this paper should be made as follows: Zhang, D., Zhou, Z., Zou, Q., Zhan, T. and
Jo, M. (2012) ‘Asynchronous event detection for context inconsistency in pervasive computing’,
Int. J. Ad Hoc and Ubiquitous Computing, Vol. 11, No. 4, pp.195–205.

Biographical notes: Daqiang Zhang is an associate professor at Nanjing Normal University,
China. He received his PhD from Shanghai Jiao Tong University, China. His research interests
include Internet of Things, cloud computing and ubiquitous computing.

196 D. Zhang et al.

two problems. They require central control or centralised,
which incurs their less scalability in large-scale pervasive
computing environments with a huge number of nodes.
Moreover, they implicitly assume that contexts being
checked belong to the same snapshot so that they could not
fairly measure the temporal relations among context events.
For the above RFID-based location acquisition, they could
detect the context inconsistency with the assumption that
these two pieces of location context took place at the same
time. This assumption is criticised in Huang et al. (2009)
and Zhang et al. (2011) because it may not hold in some
pervasive computing environments that concurrent events
(formal definition as Figure 5) are normal owing to the
asynchronous communication and network delay.

To eliminate the above two assumptions, CEDA
(Concurrent Event Detection for Asynchronous inconsistency
checking) (Huang et al., 2009) was proposed. Intuitively, it
mapped context inconsistency checking into context event
detection and checked concurrent context events based on
the happened-before relation. CEDA has three limitations.
Firstly, it checked event inconsistency in a centralised
manner, incurring its less effectiveness in large-scale
pervasive applications. Secondly, it introduced false negative
because happened-before relation could hardly capture all
event relations accurately. Finally, CEDA suffered heavy
time and space complexity, resulting in its poor performance.
Figure 1 illustrates the fairness of central-based systems in
detecting context inconsistency among n nodes. All nodes are
in the same environment and every node acquires one kind of
context and delivers contextual information to central node D
by m message. Thus, the node D will get m * n communication
overhead, n times as much as that of the normal node, (e.g.,
node A or F).

To address the challenges of the current schemes, we
propose in this paper SECA scheme - asynchronous event
detection for context inconsistency in pervasive computing
environments, which is built based on time snapshots and
logical clocks. SECA detects context inconsistency in a

1 Introduction

Growing convergence of wireless communication
technologies, hand-held devices and embedded systems
has fostered an attention to pervasive computing, which is
a new computing paradigm shift from distributed system
(Jian et al.,2012). The new paradigm aims at creating
intelligent spaces so that users access services from spaces
without awareness of underlying technologies. This kind of
intelligence is chiefly achieved by context-awareness that
refers to a mechanism that assists pervasive applications
in adapting to varying contextual information. Contexts
are pieces of information that captures the features of
pervasive computing environments (Xu et al., 2008). Owing
to the context noise caused by unreliable connectivity,
resource constraints and dynamic context evolution, context
inconsistency remains open (Zhang et al., 2010). For instance,
a RFID-based application may obtain two pieces of location
contexts: the user is in the living room and the user is in the
kitchen owing to the RFID data noise or signal interference
(Huang et al., 2009; Zhang et al., 2011; Zhang et al., 2012 and
Jian et al., 2012).

A wide spectrum of schemes for context inconsistency
checking have been proposed over the past three years. In
Wang et al. (2004), Bu et al. (2004) and Bu et al. (2004),
hidden rules and axioms from ontology have been exploited
to check context inconsistency where contexts were denoted
as assertions. In Xu et al. (2008), two policies drop-all and
drop-best were proposed to resolve context inconsistency
where contexts were modeled by tuples. Nevertheless, these
two schemes did not delineate the context inconsistency
checking. In Xu et al. (2006), a tree-based checking
scheme on top of the first-order logic was reported, which
detected context inconsistency by refining consistency trees
using context constraints. To further extend the work, (Xu
et al., 2010) reported the manners by which the context
consistency was built and checked with partial constraints.
However, most existing schemes are seriously limited by

Zhangbing Zhou is an associate professor at China University of Geosciences (Beijing). He
received his PhD from Digital Enterprise Research Institute at Galway, Ireland. His research
interests include process-aware information system, service-oriented computing, cloud computing
and sensor network middleware.

Qin Zou received his PhD from Wuhan University, China in 2012. From Oct. 2010 to Oct.
2011, he was a visiting student at the Computer Vision Lab, University of South Carolina. His
research interests involve computer vision, machine learning, ubiquitous computing and intelligent
transportation systems.

Tianyi Zhan is a PhD student at Nanjing University. Her research interests include multi-agent
system, mechanism design and algorithmic game theory.

Minho Jo is a Brain Korea Professor of College of Information and Communications, Korea
Univ., Seoul. He received his PhD in Dept. of Industrial and Systems Engineering, Lehigh
Univ., Pennsylvania, USA in 1994. He is an Editor of IEEE Network. He is the Founder and
Editor-in-Chief of KSII Transactions on Internet and Information Systems. He is the Vice President
of Computer Society of IEEK (Institute of Electronics Engineers of Korea).

Asynchronous event detection for context inconsistency in pervasive computing 197

scheme, following by theoretical analysis. Section 5 reports
our extensive experimental results. Section 6 concludes the
paper and point out directions of the future improvement.

2 Related work

Context-awareness is a main mechanism for pervasive
computing that enables people to unobtrusively access
services without the awareness of underlying technologies.
Noisy contexts usually lead to context-aware applications
incongruous behaviours and user perplexed feelings. Hitherto,
context inconsistency detection has drawn increasing
attention in recent years.

A bunch of schemes have been proposed in the existing
literature. In Wang et al. (2004) and Gu et al. (2004),
ontology was used to model contexts and their properties.
In Bu et al. (2006) and Bu et al. (2006), context consistency
was specified by ontology assertions such that it could be
checked by hidden rules and axioms in ontology. In Xu
et al. (2006), context consistency was modeled by tuples
and inconsistency checking was mapped to the comparison
among the elements in tuples. This kind of context
inconsistency was resolved in Xu et al. (2008), where three
resolution policies including drop-all and drop-best had
been proposed. To further detect context inconsistency
based on first order logic, (Xu et al., 2010) reported the work
that built context consistency trees and refined these trees
by checking partial constraints. However, most existing
schemes suffer from a couple of problems. They are heavily
centralised or require central control, which incurs their
ineffectiveness in large-scale pervasive environments or
pervasive applications. Moreover, they do not consider the
event relations, particularly temporal relations. As a matter
of fact, most of them implicitly assume that contexts being
examined belong to the same snapshot. This assumption may
not always be satisfied in pervasive computing environments,
which are characterised by asynchronous cooperation and
schedule. Note that DCCI (Zhang et al., 2011) reported the
work that detected context inconsistency in a peer-to-peer
manner. However, this work also relies on the above two
assumptions.

CEDA (Huang et al., 2009), as a derivation of Huang
et al. (2011), took event temporal relations into account
and presented a scheme on the basis of happened-before
relation. It consisted of a checker process that determined
context inconsistency and several normal processes that
reported the values of event vector clocks. However, CEDA
was a semi-centralised scheme in which the checker process
might be the system bottleneck when the system scale
increases. Another prominent issue is that its communication
overhead was heavy, since normal processes reported their
observations from time to time owing to the frequent
happened context events. Taking RFID for example, a
reader gets around 50 values each second from the same tag
as usual (Zhang et al., 2011). In addition, CEDA ignored
some false negative scenarios, which affected its detection
accuracy.

distributed manner, which enables checking nodes not to be
blocked or to become system bottlenecks. It adopts logical
clocks rather than vector clocks to evaluate event relations.
In order to be scalable, SECA customises logical clocks by
holding the value part. Thus, it detects event relations that
CEDA can and cannot support. Theoretical analysis and
extensive experimental results show that SECA achieves
higher detection accuracy than that of CEDA in a more
scalable manner. To summarise, the main contributions of
this paper are the following three-fold.

1 SECA scheme is significantly improved compared with
the state-of-the-art detecting techniques, such as CEDA
scheme from the performance aspect. Specifically,
CEDA is a central-based checking system, which makes
the payload of the system heavy. In contrast, SECA
achieves its function in a fully distributed manner.

2 SECA scheme can detect false negative scenarios where
CEDA fails to. We also conduct theoretical analysis to
discuss about the reasons that SECA can while CEDA
cannot.

3 SECA scheme respectively reduces CEDA’s complexity
of time and space from O (n2) to O(n) and from O(1)
to O(n), where n is the number of nodes in a pervasive
network.

Preliminary result of this paper has been reported in our
previous work (Zhang et al., 2012 and Zhang et al., 2011).
This paper gives a more comprehensive presentation and
discussion about the asynchronous event detection for
checking the context inconsistency, including details of
definitions, tractable algorithms and evaluation of the
algorithms.

The remaining of this paper is structured as follows.
Section 2 provides an overview of the existing work. Section
3 briefly introduces the background knowledge that is the
basis of our work. Section 4 presents the design of SECA

Figure 1 The fairness of central-based systems in event detection
for context inconsistency. The numbers in the figure
refer to the corresponding link’s bandwidth demand
(see online version for colours)

198 D. Zhang et al.

If b is sending a message by one process and c is the receipt of
the same message by another process, then b → c.

If b → c and c → d, then b → d.

Note that any event cannot occur before itself, i.e., b b
for any event b. Two events b and c are concurrent if both
b c and c b. In fact, the happened-before relation is a
kind of strict partial order, which is inherently transitive,
irreflexive and asymmetric. Note that the processes that
compose a distributed system have no knowledge of the
happened-before relation unless they are ordered by a logical
clock, e.g., Lamport clock or vector clock (Fidge, 1988 and
Mattern, 1994). Even though one event b occurs physically
earlier than another event c, this does not imply that b → c.
For the same reason, b → c neither indicates that the event b
occurs physically earlier than the event c.

3.2 Logical clock
Logical clock is introduced in distributed computing owing
to the lack of global physical clocks and completely accurate
synchronisation clocks. It is a mechanism for capturing causal
and chronological relations between events. It is defined as
follow:

Definition 3.2 Given an event a in a process Pi, the
corresponding logical clock Ci is a function that assigns a
number Ci(a), where the number is regarded as the time when
the event occurred.

By Definition 3.2, the clocks of the entire system is
represented by the function C that assigns to any event a the
number C(a), where C(a) = Cj(a) if a is an event in the process
Pj. Thus, only when one of following conditions is satisfied,
the happened-before relation is true:

1 Events a and b are in the same Pi and a occurs before b,
then Ci(a) < Ci(b).

2 Event a in the process Pi sends the message to an event b
in the process pj, then Ci(a) < Ci(b).

Let P0, P1 and P2 be three processes and a, b, ...,k be events.
All events are counted by Lamport’s logical clock algorithm.
Figure 2 illustrates an example using Lamport’s logical
clock, which partially orders the events happened in P0, P1
and P2. Lamport’s logical clock algorithm gets local events
sequenced, e.g., a and b events. However, it causes an issue
of identical timestamps and thus it hardly states which events
are causally related. For instance, whether events a and f may
have the same timestamps or not. To address the identical
timestamp issue, vector clock is introduced.

Figure 2 An example of Lamport’s logical clock

It is worthwhile to mention that our work SECA is similar
with IEEE 1516 time management (Fujimoto, 1998 and
Group, 2000) with several differences.

•	 Firstly, we share the similar idea in time management
in IEEE 1516. We focus on the concept of snapshot
timestamp, as well as its characteristics with theoretical
analysis. While IEEE 1516 emphasises on the usage of
time management with distributed time clocks.

•	 Secondly, we develop and implement the snapshot clock
for concurrent event detection, while IEEE 1516 is a
standard that does not provide a way to checking event
concurrency detection. Actually, IEEE 1516 is designed
for simulations to ensure that temporal aspects of the
system under investigation are correctly reproduced by
the simulation model.

•	 Finally, SECA is an independent scheme and can be
customised for personal computers and smart devices.
While IEEE 1516 relies on federates and the Runtime
Infrastructure (RTI), because it is just a part of IEEE 1516
standard. IEEE 1516 time management can be extracted
as an independent module after modification. In addition,
IEEE 1516 is more complex than SECA, providing
various functions that are not mentioned in SECA, e.g.,
clock synchronisation and time compensation.

Consequently, we find it appropriate to revisit the event
relation in asynchronous pervasive computing environment.
Owing to the absence of a global clock and absence of 100%
accurately synchronised clocks, logical clock was introduced
in Lamport (1978) and happened-before was designed to
measure event relations. In this paper, SECA customises a
logical clock for event detection of context inconsistency.
Theoretical analysis and experimental results show that
SECA address the issue of context inconsistency detection
with an accurate and scalable manner.

3 Background

In this section we introduce happened-before relation. Then
we give an overview about the logical clock and Lamport’s
algorithm. Finally, we briefly present what vector clock is.

3.1 Happened-before relation
The happened-before relation is coined in Lamport (1978).
It refers to a way of ordering events by the potential causal
relation of pairs of events in a concurrent system, particularly
asynchronous distributed systems. Suppose a single process
is a set of events with a priori total ordering, the events of a
process form a sequence and sending or receiving messages in
a process is an event (Zhou et al., 2008). Thus, the happened-
before relation denoted by is given as Definition 3.1.

Definition 3.1 The ‘→’ among events of a system is a relation
such that:

If b and c are events in the same process and b occurs before
c, then b → c.

Asynchronous event detection for context inconsistency in pervasive computing 199

Pn, which communicate with each other through message-
passing (Zhou et al., 2012). The processes do not share a
global memory and communicate solely by exchanging
messages. The communication delay is finite but unbounded.
An event e in the process Pj is modeled by intervals using
boolean predicate Ej. The event e is occurring in the process
Pj when Ej is true. Otherwise, the event does not exist. The
events are modeled by means of intervals. The beginning and
the end of an event are denoted as lo and hi, respectively.

4.2 Modeling events by intervals
The event is detected by a boolean predicate Bi. The event
is happening in the process Pi when Bi is true and it does
not occur when Bi is false. The event is represented by an
interval, denoted by lo and hi, corresponding to the beginning
and the end of the interval. The notations in the design of the
proposed scheme are given in Table 1.

Table 1 Notations in the design of SECA algorithm

Notation Explanation

n the number of processes
Pi the ith process involved in the

context inconsistency detection
lo the beginning of an interval
hi the end of an interval
I the interval that denotes the time period

between two successive events
Ei event on Pi
SCi [1...n] snapshot clock on Pi

4.3 System design
This subsection presents snapshot timestamp and its update
policy and then introduces snapshot-based event detection.

Snapshot Timestamp is an implementation of logical clocks,
where all nodes maintain a logical clock. In the system of snapshot
clocks, the time domain is denoted as a set of n—dimensional,
non-negative integer clock. Each process Pi maintains a snapshot
clock Si[1..n], where Si[k] is the kth local logical timestamp and
describes the logical time process at the process Pi. The process
Pi updates its snapshot clock by the following rules:

•	 Before sending a message, the process Pi updates its
local clock by

[] [1] (0),i iS k S k d d= − + > (2)

 where the default value of d is 1. Then, Pi piggybacks
a message m with its snapshot clock to the remaining
nodes in the same environment.

•	 When receiving a message (m, Sj[send]) from the
process Pj, the process Pi gets the snapshot timestamp at
the receiver point as:

Si[receiver] = max(Si[k], Sj[send]), (1 < k < n) (3)

3.3 Vector clock
Vector clock refers to a mechanism for partially ordering
events in a distributed system and detecting causality
violations. The vector clock of a holistic system is an array/
vector of N logical clocks and every process maintains a
clock. A local smallest possible value copy of the global
clock-array is kept in every process. Figure 3 shows an
example of vector clock.

Figure 3 An example of vector clock

() () [() ()]

[() ()]
j j

k k

VC b VC c j VC b VC c
k VC b VC c

< ⇔ ∀ ≤ ∧

∃ <
(1)

Let VC be a function of assigning the number VC(a) to an
event a, where VC(a) = VCj(a) if a is an event in the process
Pj. Equation 1 gives the judgement of vector clocks of two
events b and c. Thus, happened-before relation in vector
clock is given by Theorem 1.

Theorem 1 If VC(b) < VC(c), then b → c.

Vector clock is promising for event ordering, but it has
several conspicuous issues. First, it requires that every
process maintains an array to record the logical clock values
of all processes. Second, it is designed under an assumption
of a fixed set of participants (Almeida et al., 2008). This
assumption may not be held in asynchronous pervasive
computing environments, where nodes are able to join or
leave pervasive networks randomly. The same issue appears
in Lamport’s logical clock. Consequently, these logical clock
algorithms are inappropriate to be used in pervasive scenarios
due to changing numbers of participants and churns.

4 Asynchronous event detection for context
inconsistency in pervasive computing

In this section, we propose a scheme for event detection for
context inconsistency in pervasive computing environments.
We introduce the system model and then depict the system
design in detail, followed by discussions.

4.1 System model
Pervasive computing environments are modeled as a
loosely-coupled distributed system, where physical entities
(e.g., objects and users) sense environments and pervasive
infrastructures handle sensor readings and deliver services to
pervasive applications. A pervasive computing environment
is composed of a set of n asynchronous processes P1, P2, ...,

200 D. Zhang et al.

Proof: Straightforwardness.

Note that the concurrent relation between the events b and
c can be detected by comparing their timestamps (e.g., Sp
and Sq). However, this is an inappropriate scheme owing to
two reasons. One is that it is complex to compare snapshot
timestamps. The other is that it may incur false negative
when using the happened – before relation, which will be
discussed in the discussion part. In order to easily detect
concurrent events, we propose an event concurrence detection
mechanism as presented in Theorem 4.

Theorem 4 Given two events b and c in the processes Pi
and Pj and these two events communicate each other.

Assume the event b sends a message to the event c with its
timestamp Spb[i]. Then:

([]lo b hib c c Sp i c⇔ ≤ <�

Proof: There is a message from the event b to the event c.
According to the update policy of snapshot clocks, Spb[i] is
the maximal event timestamp between the timestamps of the
events b and c, respectively. Thus, the value of Spb[i] is not
less than clo. Because the message is handled by the event c,
the value of Spb[i] must be less than chi

4.4 Snapshot-based Concurrent Event Detection
In this section we present the SECA scheme asynchronous
event detection for context inconsistency in pervasive
computing environments. SECA is built upon snapshot
timestamps and enables all nodes to detect concurrent context
inconsistency events without central control or centralised
hierarchy. Thus, SECA dramatically reduces communication
complexity and successfully avoids the risk that the central
nodes are easily to be the bottleneck of a pervasive computing
system.

The distributed architecture of SECA suggests that every
process will automatically check context inconsistency. The
basis of context inconsistency detection lies in the fact that:
when two events b and c are concurrent, b and c can satisfy
Theorem 4. Figure 5 illustrates the fact that the events b and
c are concurrent.

Figure 5 Concurrent events b and c, wherec b cI lo I x I hi≤ <

The pseudo-code of SECA scheme is given in Algorithm
1, which includes three parts: event processing (lines 2–8),

Figure 4 illustrates the update policies of snapshot clock
algorithm, where events are represented by the starting and
the end of intervals, i.e., lo and hi. When the process P0
would like to send a message, it will automatically increment
the value of its snapshot clock and then forwards it to the
processes P1 and P2.

Figure 4 An example of snapshot-clock update mechanism

4.3.1 Basic properties
Isomorphism. Evidently, by comparing timestamps (i.e., an
array of n– elements), the snapshot clock keeps its property
of isomorphism. The relations between timestamp intervals
include two ordering relations represented as ‘≤’ and ‘<’ and
one concurrent relation denoted as ‘||’.

Property 4.1 Given two snapshot timestamp Sp and Sq, the
isomorphism of the snapshot clock is given as:

,

[] []
 and [] []

 not () and not ()

i

i i

Sp Sq Sp i Sq i
Sp Sq Sp Sq Sp i Sq i
Sp Sq Sp Sq Sq Sq

′

≤ ⇔ ∀ ≤
′< ⇔ ≤ ∃ <

⇔ < <�

Happened-before relation. Recall that relation → partially
orders the set of events in a distributed execution. Snapshot
timestamp based events in a distributed system satisfies
Theorem 2.

Theorem 2 Suppose two events b and c have timestamps Sp
and Sq respectively, then:

b c Sp Sq
b c Sp Sq

→ ⇔ <
⇔� �

Proof: According to the update policies of snapshot clocks,
the happened – before relation holds.

Consequently, an isomorphism property exists between the
set of partially ordered events produced by a distributed
computation and their timestamps. This is a powerful
and interesting property of snapshot clocks. By checking
timestamps, we are able to get the event concurrent relations.
For instance, let the events b and c being occurred at the
processes Pi and Qj, respectively. They are assigned of
timestamps Sp and Sq. Then, the happened – before relation
between these two events is satisfied in Theorem 3.

Theorem 3

[] []b c Sp i Sq i→ ⇔ <

Asynchronous event detection for context inconsistency in pervasive computing 201

In some cases, intervals are overlapped and events are
concurrent, but CEDA cannot detect them. This is notorious
for false negative phenomena, thus definitely brings down
the detection accuracy of the CEDA scheme. This is because
Equation 4 cannot detect these overlapping intervals, although
they are mutually across.

Figure 7 illustrates three kinds of false negative scenarios,
where CEDA scheme fails to check context consistency
correctly In Figures 7(a), 7(c) and 7(c), two events in two
processes satisfy

message processing (lines 9–19) and context inconsistency
checking (lines 20–26).

The event processing refers to a process that updates its
snapshot clock when an event occurs within its life span. To
be specific, the process updates its snapshot clock, the event
queue EQ, as well as interval queue IQ. by broadcast (e.g.,
SECA offers a System-Broadcast primitive). Note that we
do not provide a function to reduce the message complexity
in SECA scheme owing to its scale is not large. For
large-scale applications of context inconsistency detections,
to further reduce the message complexity, we may design
a preliminary procedure to let every process realise which
processes it should communicate with for inconsistency
detection.

There are two kinds of message exchange actions: sending
and receiving. The sender is in charge of updating the event
queue and interval queue (see steps 11–14). Correspondingly
the receiving process modifies its snapshot clock by
picking the maximal timestamp value between the snapshot
timestamps of the sender and receiver processes (see steps
15–19). Note that the actions of senders and receivers are
incorporated together in the pseudo-code.

The third part of Algorithm 1 corresponds to the context
consistency detection. Since the elements in EE implicitly
satisfy Theorem 4, we output the event pairs simply by a
validation check.

4.5 Discussions
Thus far, we have presented the design of SECA scheme in
previous sections. Does SECA solve false negative caused
in CEDA scheme? Does SECA detect context consistency
accurately in pervasive computing environments? We
investigate these issues with theoretical study in this section.
We further evaluate SECA scheme by extensive experiments
in the following Section 5.

4.5.1 False negative in Happened – Before-based
context consistency detection

Given n intervals I1, I2,….,In, CEDA checks concurrent context
consistency events by Equation 4, which is defined upon the
happened – before relation.

(. .) (. .), 1 .j k k jI lo I hi I lo I hi j k n→ ∧ → ∀ ≤ ≠ < (4)

The case of interval overlaps, which is characterised by
concurrent events, is illustrated by Figure 6.

Figure 6 Overlapping intervals that can be detected based on
Happened – before relation in CEDA scheme

202 D. Zhang et al.

4.5.2 Complexity
Taking a panoramic view of the SECA scheme, it does not
rely on central control to check context consistency.

All processes involved in a pervasive system are equal
and check context consistency by snapshot clocks. Every
process requires O(1) space complexity to maintain snapshot
timestamps and O(n) time complexity for every context
consistency event detection.

To further evaluate the time and space complexity of the
proposed scheme, we have implemented the detection schemes
by means of physical clocks, vector clocks and snapshot
clocks, labeled as PCA, CEDA and SCA, respectively. Table 2
compares the PCA, CEDA and SECA in terms of their
clock synchronisation, handling the occurrence of an event,
detecting overlapped intervals and concurrent events and false
negative. By comparison, SCA significantly reduces the time
and space complexity concerning event processing and context
consistency checking. Meanwhile, SECA cuts off a half of the
possibility of false negative generated in CEDA scheme.

Table 2 Comparison of PCA, CEDA and SECA with respect to
checking context consistency events

PCA CEDA SECA

Synchronisation × ×
An event occurs × O (n) O(1)
Concurrent event O(n) O (n2) O(n)
False negative × |overlap| < e –e < overlap < 0

(. .) (. .), (. .)

(. .), and (. .) (. .),
j k k j j k

k j j k k j

I lo I hi I lo I hi I lo I hi
I lo I hi I lo I hi I lo I hi

→ ∧ Λ

→ Λ

�

respectively. These two event pairs occur concurrently but
Equation 4 fails to detect them. On the contrary SECA
scheme is capable of finding these concurrent context events
successfully As for Figures 7(a) and 7(b), SECA compares
the message timestamps of senders with the lo and hi of
the receivers and then find the concurrency. Note that
concurrency in Figure 7(c) is challenging to detect. This kind
of concurrency is mainly caused by the message delay.

As a matter of fact, there are 25 temporal interaction
of intervals in a distributed system (Kshemkalyani, 1996;
Zhang et al., 2012 and Chen et al., 2012), as shown in
Figure 8. We have checked these 25 temporal interaction of
intervals and find that 16 temporal interaction of intervals
can satisfy the requirement shown in Equation 4. This
implies that these 16 temporal interaction of intervals can
be accurately recognised by the happened – before relation.
However, the rest of 9 temporal interaction of intervals, i.e.,
IA, IB, IC, ID, IE, IF, IJ, IH and IK labeled in Figure 8, may
be overlapped in physical time, but the happened – before
relation falls short of checking them. For those 16 temporal
interaction of intervals within concurrent events, SECA
scheme can detect them using the snapshot timestamp and
hence may be regarded as a general solution. For the rest
temporal interaction of intervals, it remains open to research
community.

Figure 7 Three kinds of false negative scenarios caused by happened – before relation in CEDA scheme. Concurrent events in these
scenarios can be accurately detected by SECA scheme (a) False negative scenario one between two concurrent events; (b) False
negative scenario two between two concurrent events and (c) False negative scenario three between two concurrent events

Figure 8 Temporal interaction of intervals in a distributed system

Asynchronous event detection for context inconsistency in pervasive computing 203

Figure 9 illustrates the performance results with tuning
the number of nodes from 2 to 20. Both CEDA and SECA
schemes achieve high level of detection accuracy, showing
a slightly downward trend. This indicates that vector clocks
and happened – before relations are efficient for detection of
concurrent context inconsistency events. Meanwhile, SECA
gets higher level of accuracy than CEDA scheme, which is
attributed to the exclusion cases that CEDA scheme fails to
detect are checked by snapshot clocks in SECA scheme.

Figure 9 Overall performance of SECA scheme by increasing
node participants

5.3 Detection performance with varying
message delays

In this section, several experiments are conducted to
investigate how the changes of the average message delay
affect the concurrent event detection of the proposed scheme.

As shown in Figure 10, both SECA and CEDA schemes
reduce their detection accuracy with the increase of message
delay (note that the x–axis is the logarithm of the message
delay, counted by seconds). In all experiments, SECA
achieves higher level of accuracy than CEDA, owing to its
snapshot-based timestamp checking mechanism. As the
logarithm of the message delay is between –2 to 3, SECA
gets a better detection accuracy with less communication
overheads. Meanwhile, in view of the pervasive network
scale, we hereby set the value of the logarithm of message
delay as 0.25 to 8 seconds.

Figure 10 Detection accuracy with varying message delays

5 Experiments

We conduct extensive experiments in this section to
further evaluate whether SECA is appropriate to context-
aware applications in asynchronous pervasive computing
environments. Particularly, this section will evaluate:

•	 to what extent the detection accuracy is that SECA
scheme can achieve

•	 whether SECA outperforms CEDA in terms of detection
accuracy and computation.

5.1 Experiment setup
A smart building scenario is simulated where users move
around randomly. The duration of users’ staying in an office
follows the exponential distribution. In view of that user
location is regarded as the most important type of context
in asynchronous pervasive computing environments (Xu
et al., 2009; Ni et al., 2004; Want et al., 1992 and Ji ,2011),
user location is our focus. The environment is equipped with
RFID devices and every user carries a RFID tag such that the
location context is collected timely and correctly. The RFID
data concerning user location is generated with controlled
error rates of 10%, 20%, 30%, 40% and 50% by using the
mechanisms presented in the existing literature (Xu et al.,
2010 and Rao et al., 2006). A constriction is implanted that
a user cannot have two difference locations at the same
time. Table 3 reports the experimental settings in detail.
Note that some parameters are not listed in Table 3, e.g.,
lo and hi, since they are included in the design of SECA
scheme, illustrated in Algorithm 1. Meanwhile, the detection
accuracy is evaluated as the average value for all processes
in all network nodes.

Table 3 Experimental settings

Experimental settings

The number of processes 2–15
The event duration 5 – 120s
The message delay 0.01 – 655.36s

Windows 7 Ultimate
Checking Devices Intel Core2 CPU, 1.67 GHz

Memory: 2 GB Disk: 512 GB

5.2 Overall performance
A series of experiments are designed to check the detection
accuracy of SECA and whether it performs better than
CEDA. Given that the experiments shed light on detecting
concurrent events of user locations, we limit the number of
nodes attending for the same contexts from 2 to 20. Every
node runs two detection process instances. Every event has a
random life span from 20 to 120 seconds and every message
suffers a random delay between 0.25 to 8 seconds. The
following experiments employed the same setting without
explicit declaration.

204 D. Zhang et al.

Currently, SECA scheme could be further improved in the
following perspectives. Firstly, we plan to investigate how SECA
performs in large-scale pervasive computing environments
with thousands of participants. Secondly, we will study whether
and how SECA copes with the dynamic changes of processes
involved in the concurrent event detection. Finally, we are going
to evaluate SECA performances in various scenarios with more
types of contexts and consistency constraints.

Acknowledgement

This work is supported by the National Natural Science
Foundation of China (Grant Nos. 61103185, 61003247,
61100178, 61073118 and 50905063), the Startup
Foundation of Nanjing Normal University (Grant No.
2011119XGQ0072), Natural Science Foundation of the
Higher Education Institutions of Jiangsu Province, China
(Grant No. 11KJB520009) and the Fundamental Research
Funds for the Central Universities (China University of
Geosciences at Beijing, China). This work is also supported
by Major Program of National Natural Science Foundation of
Jiangsu Province (Grant No. BK211005). This research was
also supported by the Korea-China Science and Technology
Joint Research Center by the National Research Foundation
(NRF) under Grant No. 2011-0019905 of Ministry of
Education, Science and Technology (MEST), the Korean
government.

References
Almeida, P., Baquero, C. and Fonte, V. (2008) ‘Interval tree clocks: a

logical clock for dynamic systems,’ Princi. Distri. Sys., Lecture
Notes in Comp. Sci., Vol. 5401, pp.259–274.

Bu, Y., Chen, S., Li, J., Tao, X. and Lu, J. (2006) ‘Context consistency
management using ontology based model’, in Current Trends
in Database Technology – EDBT Workshops, pp.741–755.

Bu, Y., Gu, T., Tao, X., Li, J., Chen, S. and Lu, J. (2006) ‘Managing
quality of context in pervasive computing’, in Proc. of the 6th.
Int. Conf. on Quality Softw., Washington, DC, USA, pp.193–200.

Chen, Z., Zhang, D., Zhu, R. and Yin, P. (2012) ‘A review of
automated formal verification of ad hoc routing protocols for
wireless sensor networks’, Sensor Letters, Vol. 6, pp.99–112.

Fidge, C.J. (1988) ‘Timestamps in message-passing systems that
preserve the partial ordering’, in Proc. of In 11th Austra. Comp.
Sci. Conf., University of Queensland and Griffith University,
pp.55–66.

Fujimoto, R.M. (1998) ‘Time management in the high level
architecture’, Simulation, vol. 71, No. 6, pp.388–400.

Group, W.H.E.W. (2000) ‘Ieee 1516 – standard for modeling and
simulation high level architecture framework and rules’, IEEE
Standard, July 2000, pp.1–38.

Gu, T., Wang, X.H., Pung, H.K. and Zhang, D.Q. (2004) ‘An
ontology-based context model in intelligent environments’, in
Proc. of Commu. Netw. Distri. Sys. Model. Simul. Conf., 2004,
pp.270–275.

Huang, Y., Ma, X., Cao, J., Tao, X. and Lu, J. (2009) ‘Concurrent
event detection for asynchronous consistency checking
of pervasive context’, IEEE International Conference on

5.4 Detection performance with varying
event duration

This section carries out a couple of experiments to evaluate
to what extent the event duration influences the detection
accuracy of SECA scheme. It also examines the appropriate
values of the event duration in given scenarios.

Figure 11 illustrates the experimental results with varying
the event duration from 20 to 120 seconds. Both SECA
and CEDA schemes are capable of achieving high level of
detection accuracy (the least accuracy is bigger than 85%.),
which indicates that they are not heavily influenced by event
duration. The longer the event duration is, the higher level of
detection accuracy SECA and CEDA can achieve. Figure 11
also indicates that SECA is much more accurate than CEDA
in handling events with various life span. Consider that
SECA gets a high level of detection accuracy when the event
duration is in a range between 20 and 50 seconds, we set the
event duration as a random value in the same range.

Figure 11 Detection accuracy with varying event duration

5.5 Lessons learned
So far we have presented all evaluations. Experimental results
show that SECA is appropriate for context-aware application
in asynchronous pervasive computing environments.
Particularly, SECA outperforms CEDA regarding concurrent
event detection of context inconsistency. It is capable of
tolerating fairly long message delay with high level of
detection accuracy. Finally, it is robust to the variations of
event duration, making it desirable in asynchronous pervasive
computing environments where message communication
suffers various delays owing to the network limitation.

6 Conclusion

In this paper, we have studied concurrent event detection of
context consistency checking in asynchronous ubiquitous
computing environments. We have proposed the snapshot
timestamp and based on it we have put forward the SECA
scheme. Extensive experimental results show that SECA is
desirable in context-aware applications and outperforms
CEDA in terms of concurrent event detection accuracy and
tolerating message delay and event duration.

Asynchronous event detection for context inconsistency in pervasive computing 205

Xu, C., Cheung, S.C. and Chan, W.K. (2006) ‘Incremental
consistency checking for pervasive context’, in Proc. of the
28th Int. Conf. Softw. Eng. ACM, pp.292–301.

Xu, C., Cheung, S.C., Chan, W.K. and Ye, C. (2010) ‘Partial constraint
checking for context consistency in pervasive computing’, ACM
Trans. Softw. Eng. Methodol., Vol. 19, pp.9:1–9:61.

Zhang, D., Chen, M., Huang, H. and Guo, M. (2011) ‘Decentralised
checking context inconsistency in pervasive computing
environments’, The J. Supercomput, pp.1–18.

Zhang, D., Guo, M., Zhou, J., Kang, D. and Cao, J. (2010) ‘Context
reasoning using extended evidence theory in pervasive
computing environments’, Future Generation Comp. Syst.,
Vol. 26, No. 2, pp.207–216.

Zhang, D., Huang, H., Lai, C-F., Liang, X. and Guo, M. (2011)
‘Survey on context-awareness in ubiquitous media’,
Multimedia Tools and Applications, DOI: 10.1007/s11042-
011-0940-9, pp.1–33.

Zhang, D., Huang, H., Liao, X. and Chen, M. (2012) ‘Empirical
study on taxi gps traces for vehicular ad hoc networks’, in
Proc. of IEEE International Conference on Communications,
Ottawa, Canada, pp.291–295.

Zhang, D., Wan, J., Liu, Q., Guan, X. and Liang, X. (2012) ‘A
taxonomy of agent technologies for ubiquitous computing
environments’, KSII Transactions on Internet and Information
Systems, Vol. 6, No. 2, pp.547–565.

Zhang, D., Zhou, J., Guo, M., Cao, J. and Li, T. (2011) ‘TASA: tag-
free activity sensing using RFID tag arrays’, IEEE Trans. on
Parallel and Distributed Systems, Vol. 22, pp.558–570.

Zhang, D., Zou, Q. and Sun, Z. (2012) ‘Seca: Snapshot-based event
detection for checking asynchronous context consistency
in ubiquitous computing’, in Proc. of 2012 IEEE Wireless
Communications and Networking Conference, pp.101–106,
Paris, France.

Zhou, Z., Bhiri, S. and Hauswirth, M. (2008) ‘Control and data
dependencies in business processes based on semantic business
activities’, in Proc. of the tenth International Conference on
Information Integration and Web-based Applications Services,
2008, pp.257–263.

Zhou, Z., Bhiri, S., Zhuge, H. and Gaaloul, W. (2012) ‘Service protocol
adaptability assessment based on novel walk computation’, IEEE
Transactions on Systems Man and Cybernetics, Part A: Systems
and Humans, DOI: 10.1109/TSMCA.2012.2183362, pp.1–32.

Pervasive Computing and Communications, Galveston, Texas,
USA, pp.1–9.

Huang, Y., Yang, Y., Cao, J., Ma, X., Tao, X. and Lu, J. (2011)
‘Runtime detection of the concurrency property in asynchronous
pervasive computing environments’, IEEE Trans. Paral. Distri.
Sys., Vol. 23, pp.1–17.

Ji, Y. (2011) ‘Performance analysis for indoor location determination’,
International Journal of Ad Hoc and Ubiquitous Computing,
Vol. 8, Nos. 1/2, pp.3–15.

Jian, M-S., Chou, T-Y. and Hsu, S.H. (2012) ‘Mobility corresponding
location-aware information services based on embedded rfid
platform’, International Journal of Ad Hoc and Ubiquitous
Computing, Vol. 9, No. 2, pp.122–131.

Kshemkalyani, A.D. (1996) ‘Temporal interactions of intervals
in distributed systems’, J. Comp. Sys. Sci., Vol. 52, No. 2,
pp.287–298.

Lamport, L. (1978) ‘Time, clocks and the ordering of events in a
distributed system’, Commun. ACM, Vol. 21, pp.558–565.

Mattern, F. (1994) ‘Virtual time and global states of distributed
systems’, in Proc. Workshop Paral. Distri. Alg., C.M. et al.,
(Eds.); Elsevier, 1989, pp.215–226, (Reprinted in: Yang, Z. and
Marsland, T.A. (Eds.); ‘Global States and Time in Distributed
Systems’, IEEE, pp.123–133).

Ni, L., Liu, Y., Lau, Y. and Patil, A. (2004) ‘Landmarc: indoor
location sensing using active rfid’, Wirel. Netw., Vol. 10, No. 6,
pp.701–710.

Rao, J., Doraiswamy, S., Thakkar, H. and Colby, L.S. (2006) ‘A
deferred cleansing method for rfid data analytics’, in Pro.
of 32nd Int. Conf. Very Large Data Bases, ser, VLDB 06,
pp.175–186.

Wang, X., Zhang, D., Gu, T. and Pung, H. (2004) ‘Ontology based
context modeling and reasoning using OWL’, in Proceedings of
the Second IEEE Annual Conference on Pervasive Computing
and Communications Workshops, Orlando, FL, USA: IEEE,
March 2004, pp.18–22.

Want, R., Hopper, A., Falcao, V. and Gibbons, J. (1992) ‘The
active badge location system’, ACM Trans. Info. Sys.,Vol. 10,
pp.91–102.

Xu, C., Cheung, S., Chan, W. and Ye, C. (2008) ‘Heuristics-based
strategies for resolving context inconsistencies in pervasive
computing applications’, Int. Conf. Distri. Comput. Sys.,
Vol. 1, pp.713–721.

